
2019-09-18

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Comparison operators

2
Comparison operators

Outline

• In this lesson, we will:

– Review comparison symbols from secondary school mathematics

– Describe the six binary comparison operators

– Understand how they differ in purpose

• They evaluate to true or false (1 or 0)

– Look at some common errors

– Upcasting of the operands

3
Comparison operators

Comparison operators

• Previously, we saw that the literals true and false actually evaluate
to the values 1 and 0, respectively

• We will now look at six comparison operators that compare integers
and floating-point numbers

– From your secondary school mathematics, given two integers or real
numbers, you can always compare their values

– For example,

1.9 2
22

7

e e

 sin 1x

10 ln 3
318

ln 2

e

2 0x

4
Comparison operators

Comparison operators

• In your mathematics courses, you used comparison operators as
statements:

If x > 2, then .

• In general, you made statements like “x < y is false.”

– Instead, you would now write or

• You may have even defined the absolute-value as:

2 4x

x y x y

0

0

x x
x

x x

2019-09-18

2

5
Comparison operators

Comparison operators

• In C++, we must make decisions on yes-no, or true-false questions

– These are collectively called Boolean-valued queries

– C++ has six Boolean-valued operators for comparing items

• Remember, we are restricted to symbols on the keyboard

– In C++, enunciate ‘!’ as “not” when you say it or think it

Comparison
Operator

Description

== equal to

!= not equal to

< less than

<= less than or equal to

>= greater than or equal to

> greater than

6
Comparison operators

Comparison operators

• Each takes two operands, and evaluates to either true or false
depending on whether or not the operands satisfy the condition

std::cout << (3 < 4) << std::endl; // prints 1

std::cout << (4 < 4) << std::endl; // prints 0

std::cout << (3 != 4) << std::endl; // prints 1

std::cout << (3.1 != 3.100) << std::endl; // prints 0

std::cout << (-42.3 == -42.3) << std::endl; // prints 1

std::cout << (-7 == 7) << std::endl; // prints 0

7
Comparison operators

Common mistakes

• The most common mistake is to write = when you mean ==

– The = operator is reserved for assignment (to be covered soon)

• Another very common mistake is to write =< or => when you
mean <= or >=, respectively

– Remember to write it as you say it:

3 is less than or equal to 4

3 < = 4

or 3 <= 4

8
Comparison operators

Common mistakes

• Consider these two mistakes:
#include <iostream>

int main();

int main() {

std::cout << (3 =< 4) << std::endl;

std::cout << (3 => 4) << std::endl;

return 0;

}

• The error messages can be a little opaque, but you can see the issue:
example.cpp: In function 'int main()':

example.cpp:6:22: error: expected primary-expression before '<' token

std::cout << (3 =< 4) << std::endl;

^

example.cpp:7:22: error: expected primary-expression before '>' token

std::cout << (3 => 4) << std::endl;

^

Write it as you say it: 3 is less than or equal to 4

2019-09-18

3

9
Comparison operators

Complementary operators

• If x and y are different values, note these relationship:

x < y x >= y

x == y x != y

x > y x <= y

• The result in the first column will always be the opposite of the
result in the second:

– The opposite of true is false, and the opposite of false is true

– In Boolean logic, we call this negation

• The term complementary means “that which completes”

– There is the sine of an angle, but it is only with the complement of the
sine—the cosine—that we know where we are on the circle

10
Comparison operators

Sequences of comparison operators

• New programmers may try the following:

std::cout << (3 < 4 < 5) << std::endl;

• The output is 1, so was this not successful? Try it with:

std::cout << (-5 < -4 < -3) << std::endl;

• This fails: why?

– Just like with 3 + 4 + 5, the above are evaluated as

(3 < 4) < 5

(-5 < -4) < -3

– In both cases, the first evaluates to true, or 1

1 < 5

1 < -3

– The first is true, the second is false

11
Comparison operators

Upcasting

• If one operand is an integer and the other is a floating-point
number, the integer is converted to a floating-point number first:

std::cout << (3 < 3.0) << std::endl; // prints 0

std::cout << (3 != 3.00000) << std::endl; // prints 0

std::cout << (42 == 42.0) << std::endl; // prints 1

std::cout << (0 <= 0.0) << std::endl; // prints 1

• Remember that integers are stored differently from floating-point
numbers—more on this later

• All integers between –253 + 1 and 253 – 1 can be perfectly represented
using a double-precision floating-point number (double)

– The value 253 is approximately 9 quadrillion

12
Comparison operators

Summary

• Following this lesson, you now:

– Understand the six comparison operators: == != < <= >= >

– Based on the operands, these evaluate to either true or false (1 or 0)

– You must avoid using = when you want to compare the operands

– You cannot use =< or => when you mean <= or >=

– If one operand is an integer and the other is a floating-point number,
the integer is cast as a floating-point number

2019-09-18

4

13
Comparison operators

References

[1] No references?

14
Comparison operators

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

15
Comparison operators

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

